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1 Introduction
Consider the time fractional Burger’s equation (TFBE) [1-17] and the time fractional cou-
pled Burgers’ equations (TFCBEs) [18—25] defined as follows, respectively:

D u(x, t) + u(x, £)Dyu(x, t) — sDyyu(x, t) = f(x,t) forO<a <1, (1)
D} (u(x,1)) = Dy ((x, 2)) + 2u(ex, £) Dy (%, 2)) — D (m(ix, D)V(, 1)), (2)
Df (V(x, t)) =Dy, (v(x, t)) + 2v(x, t)D, (v(x, t)) -D, (u(x, t)v(x, t)), (3)

where s is a viscosity parameter, D¢ u(x, £) and Df v(x, t) are the Caputo fractional deriva-
tives of orders « and 8 [4, 7-11, 15, 26—30] defined as follows:

" ~ 1 " u(x, ) i
Dtu(x’t)_f‘(l—a)/o T (t-&)*%de forO<a<l, (4)

by the same manner, we can define Df v(x, t).

Firstly, many numerical techniques are used to obtain the solutions of equations (1)—(3)
such as Adomian decomposition method (ADM) [1], variational iteration method (VIM)
[2], cubic parametric spline (CPS) method [3], quadratic B-spline Galerkin method
(QBSGM) [4], cubic trigonometric B-splines method (CTBSM) [7], Legendre—Galerkin
spectral method (LGSM) [9], Crank—Nicolson approach (CNA) [14], finite difference
method (FDM) [16], Chebyshev collocation method (CCM) [20], spectral collocation
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method (SCM) [22], etc. For more details, Momani [1] investigated a nonperturbative
analytical solution of TFBE using ADM, while Inc [2] solved it using VIM. El-Danaf and
Hadhoud [3] used the cubic parametric spline method to obtain the numerical solution of
equation (1). Also, Esen and Tasbozan [4] and Yokus and Kaya [5] applied the quadratic
B-spline Galerkin method [4] and the expansion method with the Cole—Hopf transfor-
mation [5] to get its solution. Furthermore, Hassani and Naraghirad [6] and Yaseen and
Abbas [7] gave its solution through an optimization method based on the generalized
polynomials [6] and CTBSM [7]. Alsaedi et al. [8] gave a smooth solution of TFBE, while
Lietal. [9, 10] discussed its solution using LGSM [9] and the local discontinuous Galerkin
method (LDGM) [10]. A numerical technique based on an extended cubic B-spline func-
tion was used to solve TFBE by Akram et al. [12] and Majeed et al. [13]. Also, Onal and
Esen [14], Chen et al. [15], Yadav and Pandey [16], and Wang [17] approximated its so-
lution using CNA [14], Fourier spectral method [15], FDM [16], and the separation of
variables method [17]. The backward substitution method (BSM) and FDM were used by
Safari and Chen [18] to obtain the solutions of TFCBEs. Doha et al. [19] and Albuohimad
and Adibi [20] established their solutions by Jacobi—Gauss—Lobatto collocation method
(JGLCM) [19] and CCM [20]. Ahmed et al. [21, 22] solved them using Laplace—Adomian
decomposition method (LADM) [21], Laplace variational iteration method (LVIM) [21],
and SCM [22]. Also, the generalized differential transform method [23] and the meshfree
spectral method [24] have been used to solve TFCBEs by Liu and Hou [23] and Hus-
sain et al. [24]. Furthermore, Bekir and Guner [31] solved equations (1)—(3) using the
(G'/G)-expansion method, while Abdel-Salam and Hassan [32] solved equation (1) using
the generalized exp-function method. Also, there are some references [33—38] about the
numerical solutions of fractional equations, the researcher should read them.

Secondly, the nonpolynomial splines [26—30, 39-44] are used to solve many fractional
order partial differential equations such as fractional subdiffusion problems [26, 27, 39,
40], fractional diffusion—wave problems [41, 42], fractional Schrodinger equation [28, 29],
and fractional differential equations [30, 43]. One of the advantages of these methods is
not only investigating an approximation for the function u(x, t) but also for its derivatives.
In this study, the parametric quintic spline method (PQSM) is used to investigate the nu-
merical solutions of TFBE and TFCBEs with a local truncation error O(8) in distance
direction. Also, we demonstrate that the present method is stable and compare its results
with the existing methods such as CPS [3], QBSGM [4], and BSM [18]. These comparisons
conclude that the present method is more reliable and accurate.

This paper is organized as follows: In Sects. 2 and 3, the procedure of PQSM is presented
in detail, then we apply it to solve TFBE and TFCBEs. Section 4 contains the stability
analysis of the proposed method. Finally, the numerical results, the conclusion, and all

abbreviations are given in Sects. 5 and 6, respectively.

2 Parametric quintic spline method

Firstly, suppose that x; = x + i/ are the nodes of a uniform partition of the interval [a, b]
with # subintervals, where /1 = @, Xo=a,x,=b,andi=0,1,2,...,n. Also, consider that
t; = jk, where j = 0,1,2,..., t € [0,T] and k = At = t;,; — t;, is the time step. Secondly, let
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Qi(x, t;) be the parametric quintic spline function defined as follows:

Qi) = ai(ty) + bi(5) (x — %) + ci(t) (o — x:)* + () (% — )
+ €;(t;) sinh( (x — x;)) + fi(t;) cosh(7 (x — x;))
fori=0,1,2,...,n—1and x € [x;,%i,1], (5)
where a;(t)), bi(t)), ci(t)), di(t;), e;(t), and fi(¢;) are the spline coefficients and 7 is a constant

Suppose that #, = Q(xi, 1), s, = Qilxis1,8), R, = Q/(x1), R, = Q(xis1,t)), L, =

Q( (i ), L’l 1 = Q§4) (%i41,4), and @ = /7. Hence the spline coefficients can be determined

as follows:
ai(ty) = -f—; +1d,
b(6) = g5 [2(3+ 7)1 + (-6 + W)L],, ~ e (2R + R.) + 67(d,, ~ )]
ci(t) = %(—f—]; +R’,),
dilt) = -5 (le+1 -+ (R -R],))), (6)

ei(t) = ri( coth(dD)Ll + csch(Cb)LHl)

and fi(t) = 5 (L).
Using the continuity of 1st and 3rd derivatives of the spline function at (x;, ¢;), we have
Qi1 (% t) = Qi(ws, ¢) and Ql 1(x,, L) = Q (x,, 4), then fori=1,2,3,...,n— 1, we get

R, +4R + R, = ﬁ(“] = 2d; 4 dy,) - 617 (Ly + 281 + niL,), @)
R 2R+ R, =2y, + 2L + yL,), ®
where

y= gp(®esch(®)-1), 8= (1@ coh(®),

-1/1 d -1/1
Y = Fe) 6+y an 51_q>2 §+8.

By multiplying equation (7) by y and equation (8) by -6y, then subtracting them, we

get
. 1 . , ,
L= 120206 — 18) [(V +6y1)R_; +4(y =3y)R. + (y + 6y1)R,,,
6
]/32/ (M] 21,{] + u]z+1):| (9)

similarly, we can get L’l;l and Léﬂ
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By substituting L]li, Lé_l, and L}li .1 into equation (8), we get

(y + 6)/1)(1%’;72 + Rf+2) +2(2y +8 -6y, +68))(R_, + R’I:H)
+2(y +468 + 6y, — 1251)R§

- [+ ) + 26 = 9y 1) 2y ~200)

fori=2,3,4,...,n—2. (10)

The system of equations (10) gives (n — 3) equations in (# — 3) unknowns. Furthermore,

to have a unique solution, we need two more equations which can be defined as follows:

3 4
Y aph+hY bR+t =0 fori=1, (11)
1=0 =0
Z“I”;J + Z blR’VH +t,.1=0 fori=m-1. (12)
=0 i=0

By expanding equations (11) and (12) by Taylor’s approximation about x; and x,,_;, re-

spectively, we get

(ﬂo, ai, as, 613) = (0; 1,-2, 1):

11 97 1 1
boy b1, b, b ba) = —eym e — = ),
(bo, b1, b2, b3, ) (240 10’7120’ 10 240)
31

= goago ")V @),

4

and tp1 = 60?4:80 (hs)u(s)(xnfll t])

The local truncation error (LTE) of PQSM can be established by expanding equation

(10) by Taylor’s approximation about x;, then we have

1
LTE; = gh2(7 +8+ 12y + 128))u (x;, 1))

1
+ ﬁh‘*(19y +48 + 210y, + 3081 (x;, 1))

+ H(571y + 258 + 5208y, + 1688,)u® (v, £))

30,240

+ 907,200}18(1439;/ +148 +11,430y; +908)u 0 (x;, ) + - - - . (13)

Byassuming Ly = y +8 + 127 + 1281, L = 19y + 45 + 210y1 + 3081, and L3 = 571y + 258 +
5208y + 16881, for L; = Ly = L3 = 0, we get

31 109 103
) 8

°2s, s, 2 14
95 V1= 75850 1T 1405 (14)

)/:

and LTE; = %Mgu(m)(x;,q) + O(h*0), hence LTE; = O(h®).

Page 4 of 17
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3 Applying PQSM on fractional Burgers’ equations
To investigate the solutions of TFBE and TFCBEs using the PQSM method, we consider
that the discretization of the fractional derivative equation (4) is defined as in [3] as follows:

D u(x,t)

k—C{

j-1
mz G- m)' -(j-m-1) - a)( (i, tins1) — ulxi, m))] (15)

=0

3.1 Time fractional Burger’s equation
From equation (1), we have

R = (e = ~ (DFU] + UL, f (58)), (16)

by using CNA, we can rewrite equation (16) as follows:

R - (D“U’+;u’[u)’+(u)’] x,,t,)), 17)

by substituting (D¢ &) from equation (15) into equation (17), we get

Rj — 1 (L) i[((j_m)lfa _ (1'_ " — l)l—a)(um+1 _ Um)]
s \0-a)FQ-a) ! !

m=0

wn) + @)™ - (2 Ve o), (18)
() 2y

wherei=0,1,2,...,nand j=1,2,3,..., and

wu,-u), i=o,
Uy, = e, -U_), 1<i<n-1,
s -u_y), i=n

By substituting R’l from equation (18) into equations (10)—(12) and solving this nonlinear
system with the initial and boundary conditions using any numerical method, such as
Newton—Raphson method, we get the solution of time fractional Burger’s equation (1).

3.2 Time fractional coupled Burgers’ equations
By using CNA, we can rewrite equations (2) and (3) as follows:

R, = DU — ((ULLY, + (UL
+§[((va> WV + (Vi) + (v ™), (19)
Ry =DV — (Vi) + (Vv )

[((UV) + UV + (v, + (v ] (20)

where Riu = (Mxx)é and R’éi = (vxx)é.
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The nonlinear terms in equations (19) and (20) can be defined as in [45] as follows:

(AB,), = AB

i’
(AB,Y ' =AB' + A7'B, - AIB, (21)
where the symbols A and B in equation (21) can be used for U or V.
From equation (21) into equations (19) and (20) and by substituting D*UJ} and D’f v
from equation (15), we get

. _D‘ 1
Ry = (m) m)' e = (j—m = 1)) (U - U]
m=0
R g[w Vuvs P, e

i _ k_ﬂ < . 1-a . 1-« m+1 m
R]zi—(m>2[((l—m) = (G=m-n) (vt - V)]

m=0

—_

~[VIVL+ VIV + 5[u’ Wieuwviiti v« vid, (23)

wherei=0,1,2,...,nmand j=1,2,3,..., and

1/
Z(CHI

c),  i=0,
Ci=1i(C.,-C), 1<i<n-1, (24)

Z(Ci_ l'_l)r i=n,

where the symbol C in equation (24) can be used for U or V.

Replacing R] in equations (10)—(12) by R’1 ;, once and R] ; again, then substituting R] and
R’Zi from equations (22) and (23),, we can solve this nonlinear system with the 1mt1a1 and
boundary conditions using the Newton—Raphson method to obtain the solutions of time
fractional coupled Burgers’ equations (2) and (3).

4 Von Neumann stability analysis
In this section, we analyze the stability of PQSM using von Neumann method. For this
purpose, firstly, we need to linearize the nonlinear terms in equation (18) as in [3] as fol-

lows:

ol k@
fis [m(«- ) = ) (U -y )]
m=0

i+1

(V-] sz tanazl 09

where ¢; = LI{ is a local constant, and for simplicity we assume f(x;, ;) = 0.
Secondly, we consider that /] is defined as follows:

S} klh (26)

where / = +/-1 and & is the growth factor.



Hammad et al. Fixed Point Theory Algorithms Sci Eng (2023) 2023:9

Substituting LI{ from equation (26) into (25), we get

j
_ klh |:Z \pa $m+1 sm)] + (;g_lh) (é:/ + sf—l)(el(kh) _ e—l(kh))]
for0<i<mandj>1, (27)

where W¢ = (j —m)!'™* = (j—m = 1) and ¢, = fr—Ar—.

Substituting Llf and Ri from equations (26) and (27) into equation (10), we get

|:Z §02 l[lo‘ Sm+1 Em)] ( )(g} +%./ 1)( (kh) —e l(kh))i|
(el(—Zkh) +el(2kh)+p ( kh) ( )) +,03]

_ % £y (290 4 el P) 4 95— )( K 1 K0) 1 oy —2)]

X [/01

forj=1,2,3,..., (28)

where p; =y + 6y1, p2 =22y +8 — 61 + 681), and p3 = 2(y + 43 + 6y — 12687).
Since e¥ 4 l®h) = 9 cos(kh) and e/ — e~l&h) = 2] sin(kh), then we have

m+1 m ﬂ j =1\ o3
|:Z<p2 (£ & )]+l<sh>(z§’+£’ )s1n(kh):|
X [2,01 cos(2kh) + 20, cos(kh) + pg]
= h—62$j[2y cos(2kh) + 4(8 — y) cos(kh) + 2(y — 26)]

forj=1,2,3,.... (29)
Putting j = 1 in equation (29), we have

|:<<p2\11 1o+ l(sh) sm(kh)) (2p1 cos(2kh) + 2, cos(kh) + ,03)

- %(27/ cos(2kh) + 4(8 — y) cos(kh) + 2(y — 28))i|§1

= [(gpzlllf"o - l(%) sin(kh)> (201 cos(2kh) + 2p; cos(kh) + ,03)}50, (30)
hence
5_1 _ (p2 = lwr)ps
E01 7 (@2 +lw1)ps — pa | (1)

where W = (1) = 1, w; = (%) sin(6), @3 = (21 c0s(20) + 202 c0s(6) + p3), pa = 15 (2y x
cos(260) + 4(8 — y) cos(8) + 2(y —26)), and 6 = kh.
Now, we can study the worth cases for equation (31), when cos(0) = %1, as follows:

Page 7 of 17
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(i) For0 =2rnandn=0,+1,%£2,..., we get w; =0, 3 = 12(y +§), and ¢4 = 0, hence

1
bl =1.
(i) For0 =mnmand n==41,43,45,..., we get w; =0, 3 =4(-y + 8 + 124 — 128;), and
1
<p4:—2—§(5_y),hence|§—o|:#%<lfor3—y>0,
I
therefore,
1
5_0 <1 and §>y. (32)

Similarly, putting j = 2 in equation (29), we get

[02 (o (E" —£°)) + @2 (WS (E2 = E")) + Loy (£ + ") |3 = (@a)E. (33)

Since W5, = ((2)'"* - 1), W§, = 1 and from equation (32) we can take §' =£° and § > ,

then we have

[02(8% - 8°) + lon (&% + €°) s = (pa) &7, (34)
hence
£2 ‘ (92 — lor) 3
— = 1. 35
&0 (@2 + lw1)p3 — @4 = (35)

In general, forj=1,2,3,..., we have |§—é| <1 and§ > y. Thus, the proposed method is
stable.

5 Numerical results
In this section, the numerical solutions of TFBE and TFCBEs are obtained by using the
PQSM method as introduced in Sects. 2 and 3. In addition, we discuss their solutions in
two cases according to the spline parameters given by equation (14) as follows:

Case 1: As in [26, 29, 42], if we take y + § = %, then we obtain

31 s % 109
V=952 “252” T 75607
103 79
§y=——— and LTE=——"}8

3780 4,762,300

Case 2: Let § = 0.001, hence we have

31 109
Y =950000 7 72,850,000’
103 79
§y=——— and LTE=——"_}8
1,425,000 1,795,500,000

To show the accuracy of the proposed method, we obtain the absolute errors or the error

norms Ly and L, in each example. The error norms are demonstrated as follows:

, (36)

Loo = Maxl|(uExact)]l: - ul]

1<i<n-
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n-1
L2 = h Z((uExact)li - U{)z
i=1

Problem 5.1 Consider the time fractional Burger’s equation (1) [4] with

2

= TGoa) (£ ") + t*e™ — s(t%€"),

S 1)
the initial condition is
ux,0)=0 forO<x<1,
the boundary conditions are
u(0,8)=¢> and u(l,¢) =et?

and its exact solution is

u(x, t) = t2e”.

(37)

(38)

(39)

(40)

(41)

Table 1 contains the exact and approximated solutions of Problem 5.1 by using PQSM
with k = 0.002 and QBSGM [4] with k = 0.00025 att = 1,s =1, @ = 0.5, and / = 0.05,0.025,
and 0.0125. Also, Table 2 illustrates the numerical resultsfort =1,s =1, @ = 0.5, 7 = 80 and

Table 1 The numerical solutions and error norms of Problem 5.1 fors=1, ¢ =0.5,and t = 1

X PQSM (k = 0.002) QBSGM [4] (k = 0.00025) Exact
n=20 n=40 n=2380 n=20 n=40 n=280

0.1 1.105145 1.105166 1.105171 1.105287 1.105216 1.105197 1.105170918
02 1.221357 1221394 1.221403 1221644 1.221493 1.221455 1.221402758
03 1349794 1.349846 1.349860 1.350217 1.349992 1.349935 1.349858808
04 1491745 1491809 1491825 1492287 1491996 1491922 1491824698
0.5 1.648629 1.648703 1.648722 1.649270 1.648922 1.648838 1648721271
0.6 1.822021 1.822099 1.822119 1.822727 1.822342 1.822247 1.822118800
0.7 2.013657 2.013733 2.013753 2.014378 2.013979 2.013882 2.013752707
038 2225462 2225523 2225541 2226118 2225747 2.225661 2225540928
0.9 2459564 2459593 2459603 2460020 2459745 2459680 2459603111

Ly 311 x 10 906x 10  390x10° 848x10% 162x10% 926x 107
lee 983x 1072 204x10°  716x107 625x107% 227x10% 133x10*

Table 2 The numerical solutions and error norms of Problem 5.1 fors=1,a =0.5,n=80,and t = 1

X PQSM QBSGM [4]

k=0.002 k=0.002 k=0.001 k =0.00025
0.1 1.105171 1.105356 1.105276 1.105216
02 1.221403 1221768 1221611 1221493
03 1.349860 1350395 1350164 1.349992
04 1491825 1492516 1492218 1491996
05 1648722 1649543 1649188 1648922
06 1.822119 1.823031 1.822636 1.822342
0.7 2013753 2.014687 2014282 2.013979
08 2.225541 2226387 2.226020 2225747
0.9 2459603 2460180 2459931 2459745
Ly 3.90 x 107° 661 x 107 3.75 x 107 9.26 x 107
Loo 7.6 x 107/ 937 x 107 530 x 107 133 x 107

Page9of 17
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Table 3 The numerical solutions and error norms of Problem 5.1 fors=1,n=40,and t =1

X PQSM (k = 0.002) QBSGM [4] (k = 0.00025)
a =025 a =075 a =025 a =075
0.1 1.105164 1.105179 1.105217 1.105216
0.2 1221390 1221418 1.221495 1221493
03 1349841 1349880 1349995 1349990
04 1491802 1491850 1492000 1491993
0.5 1.648696 1.648749 1.648928 1.648920
06 1.822091 1.822147 1.822348 1.822339
0.7 2013725 2013779 2013984 2013977
0.8 2225517 2.225563 2.225750 2225744
0.9 2459589 2459618 2459747 2459744
Ly 126 x 107 133x 107 165 x 107 160 x 107
Lo 280 x 107 285 %107 233 x 107 225 %107
u
25}
20+
—— Exact

esse  Numerical

. . L X
0.2 04 0.6 0.8 1.0

Figure 1 The exact solution and the numerical solution using PQSM of Problem 5.1 for h = 0.0125, k = 0.002,
a=05andt=1

different values of k. These results show that the L, error norm at n = 80 for PQSM with
k = 0.002 is O(1077), while it is O(10~%) for QBSGM [4] with k = 0.00025, hence PQSM
is better than QBSGM [4]. Moreover, the numerical results for o = 0.25, & = 0.75, s = 1,
h =0.025, and ¢ = 1 are shown in Table 3. Figure 1 shows the relation between the exact
solution and the PQSM solution. Also, the approximated solutions and the absolute errors
behavior for « = 0.5 and 0.75 are given in Figs. 2 and 3. These computations are obtained

according to Case 1.

Problem 5.2 Consider the time fractional Burger’s equation (1) [3] with f(x,£) = O, the

initial condition is

w0y = MY + (v — ) Exp[£(x - £)]
T 1+ Exp[{(x~£)]

for-3<x<3, (42)

and the boundary conditions are given as follows:
(i) Fora =1,

pw+y+(y - Exp[£(-3-yt-§)]
1+Exp[5(-3-yt-£)]

u(-3,t) = (43)
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— t=0.2
— t=04
— t=0.6
— t=0.8

(a) (b)

Figure 2 The approximated solutions of Problem 5.1 using PQSM for h = 0.025, k =0.002, (a) @ = 0.5, and

(b)a =075
absolute error absolute error
0.000030 -
0.000020
0.000025 -
0.000015 0.000020F
0000010 0000015 | a=0.75
a=0.5
0.000010
5.x1078
5.x1076
X I L . . x
02 04 08 08 1.0 02 04 0.6 08 10

Figure 3 The absolute errors distribution of Problem 5.1 for h = 0.025, k=0.002,and t = 1

and

pty +(y =) Exp[£B -yt - &)
1+Exp[£(3-yt-§)] ’

u(3,t) =

(ii) ForO<a <1,

o 20
-3,£) ¥ 0.699993 + (1.07 x 107°) ——— — (9.67 x 107%) —————
u(=3,1) +(107 )r(1+a) (967 )l"(1+20()
s tSa
116 x 107°) ————
+(116 )F(1+3a)
and
3 o 3 tZa
3,£) = 0.100815 + (1.3 x 10%) ——— + (1.17 x 103) ————
u(3,1) +(13x )F(1+a)+( % )F(1+2a)
3a
- (572 x107%) ————.
(572 )1"(1+3a)

The exact solution is

w+y +(y — ) ExplL(x -yt —£)]

f =1.
1+ ExplE(x—yt—£)] o

u(x, t) =

(44)

(45)

(46)

(47)
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Table 4 The absolute errors of Problem 52 fora =1,5=0.1, u =03,y =04,and £ =0.8

t PQSM CPS[3]

1.0 4346 x 1074 4632 % 1073
2.0 6528 x 1074 5267 x 1073
2.5 7.264 x 107 5569 x 1073
30 7.840 x 1074 5.857 x 1073

Table 5 The numerical solutions and the absolute errors of Problem 5.2 fort=3, ¢ =1,5s=0.1,
n=03y=04and =08

X Exact solution PQSM CPS[3] Absolute errors of
PQSM CPS [3]
-1.80 0.6999932828 0.69999336 0.69999302 7614 x 1078 2608 x 107/
-1.50 0.6999834786 0.69998367 0.69998276 1938 x 107/ 7.193 x 1077
-0.96 0.6999165251 0.69991749 0.69991259 9657 x 107/ 3931 x 107
-0.48 0.6989641713 0.69897337 0.69963109 9.198 x 1070 6.669 x 107
0.00 0.6985164261 0.69852846 0.69844644 1203 x 107 6.998 x 10
048 0.6937877575 0.69381151 0.69349918 2375%x 107 2.886 x 1074
0.96 0.6746261369 0.67458239 0.67349066 4375 %x 107 1135 % 1073
1.50 0.5905446857 0.58997244 0.58651442 5722 x 1074 4030 x 1073
1.80 0.4873937837 0.48661686 048167270 7.769 x 1074 5721 x 1073

Table 6 The numerical solutions of Problem 5.2 fort=2,5=0.1, . =03,y =04,and £ =0.8

X a=02 a=08
PQSM CPS[3] PQSM CPS[3]
-1.80 0.69990818 0.69990801 0.69995843 0.69995837
-1.50 0.69976764 0.69976704 0.69989353 0.69989305
-0.96 0.69881774 0.69881444 0.69945724 0.69945423
-048 0.68593695 0.69505832 0.69348579 0.69771999
0.00 0.68023291 0.68019612 0.69080108 0.69075808
048 0.62975137 0.62969696 0.66570607 0.66557967
0.96 0.50954256 0.50952078 0.59278878 0.59246071
1.50 0.32247745 032242313 042059669 0.41986080
1.80 0.23615545 023607121 0.30646604 0.30566973

The approximated solutions of Problem 5.2 using PQSM and CPS [3] are given in Ta-
bles 4—6 with the following conditions: 4 = k = 0.01, s = 0.1, © = 0.3, y = 0.4, £ = 0.8, and
o =0.2,0.8, and 1. These results indicate that PQSM is the most accurate. Table 4 shows
that the maximum absolute error of PQSM is O(k~*), while it is O(h~2) for CPS [3]. The
exact solution and the numerical solution using PQSM for different values of « are given
in Figs. 4, 5 and 6. These results are determined according to Case 2.

Problem 5.3 Consider the time fractional coupled Burgers’ equations (2) and (3) [18] with
the initial conditions:

u(x,0) = v(x,0) =sin(x) for0<x<1, (48)
the boundary conditions are

u(0,8) =v(0,£) =0 and u(1,¢) =v(1,¢) =sin(1)e™?, (49)
and their exact solutions are

u(x,t) = vx, t) = sin(x)e™". (50)
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Figure 4 The exact solution and the numerical solution using PQSM of Problem 5.2 forh=k=0.01, ¢ =1,
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Figure 5 The approximated solutions of Problem 5.2 using PQSM for@ =1, h=k=0.01,and t=1,2,and 3

0.8
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0.2
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Figure 6 The approximated solutions of Problem 5.2 using PQSM for h =k =0.01, (@) « =0.2 and (b) « =0.8

Table 7 illustrates the exact solution and the numerical solution of Problem 5.3 given
by PQSM for « = 8 = 1 and at time ¢ = 1. Comparisons between PQSM and BSM [18]
are given in Table 8 for @ = 8 = 0.6,0.9, and 1, and they conclude that PQSM gave better
results than BSM [18]. Also, the approximated solutions for & = 8 = 0.2,0.6, and 0.9 are
shown in Table 9. The solution of Problem 5.3 and the absolute errors are shown in Figs. 7

and 8. These computations are investigated according to Cases 1 and 2.
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Table 7 The numerical solution and the absolute errors of Problem 5.3 fort=1, h=0.1, k=0.01, and

a=L0=1
X Exact PQSM Absolute errors
0.1 0036726662 0.0367541 2.749 x 107
0.2 0.073086362 0.0731449 5.859 x 107
03 0.108715808 0.1088009 8510 x 107
04 0.143259002 0.1433644 1.054 x 107
05 0.176370799 0.1764883 1175 x 1074
06 0207720358 0.2078400 1.197 x 107
0.7 0.236994443 0.2371047 1103 x 1074
08 0263900558 0.2639884 8788 x 107
0.9 0.288169866 0.2882213 5141 x 107
Table 8 The L, error norm of Problem 5.3 for k=0.01
t a=p=1 a=B=09 a=B=06
PQSM BSM [18] PQSM BSM [18] PQSM BSM [18]

001 648 x 107 416 x107? 6.17 x 107 268 x 107 402 x107? 249 x 1072
0.05 243 x 107 3.99 x 1072 157 x 1072 301 x 1072 631 x 1072 258 x 1072
0.10 372 x 107 379 x 1072 1.74 % 1072 288 x 1072 582 x 1072 231 %1072
0.50 431 %107 2.55 x 1072 280 x 107 164 x 1072 523 x 1073 546 x 1073
1.00 271 x10™ 154 x 1072 813 x 1073 787 x 1073 241 x 1072 484 %1073
Table 9 The numerical solution of Problem 53 fort =1, h=0.1,and k= 0.01
X a=4=02 a=p4=06 a=B=09
0.1 0.0421081 0.0394294 0.0376431
0.2 0.0833382 0.0783387 0.0748691
03 0.1230931 0.1161984 0.1112536
04 0.1607006 0.1524908 0.1463852
0.5 0.1955216 0.1867052 0.1798625
06 0.2269384 02183411 0.2112986
0.7 0.2543721 0.2469104 0.2403234
0.8 0.2772507 0.2719389 0.2665878
0.9 0.2949838 0.2929689 0.2897663

0.30

0.25

020 — Exact

0.15 eees  Numerical

0.10

0.05

X
0.2 04 0.6 0.8 1.0

Figure 7 The exact solution and the numerical solution using PQSM of Problem 5.3 for h =k =0.01,
a=B=1andt=1
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0.004
0.005
0.002
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absolute error absolute error
0.0035 0.00012
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0.0020
= (= 0.00006
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02 04 06 08 1.0 02 04 06 08 10"
Figure 8 The absolute errors distribution of Problem 5.3 using PQSM for h=0.1, k=0.01,t =1, and
«@=02,06,09and 1

6 Conclusion

In this work, the solutions of TFBE and TFCBEs have been investigated using PQSM
whose local truncation error is O(k%). We showed that the proposed method is stable.
In addition, the given results are obtained for different values of the fractional order o and
compared with the previous methods, which verified that the present method has good

accuracy and efficiency.
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