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Abstract
In this paper, the numerical solutions of time fractional Burger’s and coupled Burgers’
equations are obtained using the parametric quintic spline method with a local
truncation error of order eight in distance direction. Additionally, the von Neumann
method was utilized for studying the stability analysis of the present method. Finally,
to show the accuracy of this method, some examples with different cases for Burger’s
and coupled Burgers’ equations are presented and their results are compared with
the previous methods.
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1 Introduction
Consider the time fractional Burger’s equation (TFBE) [1–17] and the time fractional cou-
pled Burgers’ equations (TFCBEs) [18–25] defined as follows, respectively:

Dα
t u(x, t) + u(x, t)Dxu(x, t) – sDxxu(x, t) = f (x, t) for 0 < α < 1, (1)

Dα
t
(
u(x, t)

)
= Dxx

(
u(x, t)

)
+ 2u(x, t)Dx

(
u(x, t)

)
– Dx

(
u(x, t)v(x, t)

)
, (2)

Dβ
t
(
v(x, t)

)
= Dxx

(
v(x, t)

)
+ 2v(x, t)Dx

(
v(x, t)

)
– Dx

(
u(x, t)v(x, t)

)
, (3)

where s is a viscosity parameter, Dα
t u(x, t) and Dβ

t v(x, t) are the Caputo fractional deriva-
tives of orders α and β [4, 7–11, 15, 26–30] defined as follows:

Dα
t u(x, t) =

1
�(1 – α)

∫ t

0

∂u(x, ξ )
∂ξ

(t – ξ )–α dξ for 0 < α < 1, (4)

by the same manner, we can define Dβ
t v(x, t).

Firstly, many numerical techniques are used to obtain the solutions of equations (1)–(3)
such as Adomian decomposition method (ADM) [1], variational iteration method (VIM)
[2], cubic parametric spline (CPS) method [3], quadratic B-spline Galerkin method
(QBSGM) [4], cubic trigonometric B-splines method (CTBSM) [7], Legendre–Galerkin
spectral method (LGSM) [9], Crank–Nicolson approach (CNA) [14], finite difference
method (FDM) [16], Chebyshev collocation method (CCM) [20], spectral collocation
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method (SCM) [22], etc. For more details, Momani [1] investigated a nonperturbative
analytical solution of TFBE using ADM, while Inc [2] solved it using VIM. El-Danaf and
Hadhoud [3] used the cubic parametric spline method to obtain the numerical solution of
equation (1). Also, Esen and Tasbozan [4] and Yokus and Kaya [5] applied the quadratic
B-spline Galerkin method [4] and the expansion method with the Cole–Hopf transfor-
mation [5] to get its solution. Furthermore, Hassani and Naraghirad [6] and Yaseen and
Abbas [7] gave its solution through an optimization method based on the generalized
polynomials [6] and CTBSM [7]. Alsaedi et al. [8] gave a smooth solution of TFBE, while
Li et al. [9, 10] discussed its solution using LGSM [9] and the local discontinuous Galerkin
method (LDGM) [10]. A numerical technique based on an extended cubic B-spline func-
tion was used to solve TFBE by Akram et al. [12] and Majeed et al. [13]. Also, Onal and
Esen [14], Chen et al. [15], Yadav and Pandey [16], and Wang [17] approximated its so-
lution using CNA [14], Fourier spectral method [15], FDM [16], and the separation of
variables method [17]. The backward substitution method (BSM) and FDM were used by
Safari and Chen [18] to obtain the solutions of TFCBEs. Doha et al. [19] and Albuohimad
and Adibi [20] established their solutions by Jacobi–Gauss–Lobatto collocation method
(JGLCM) [19] and CCM [20]. Ahmed et al. [21, 22] solved them using Laplace–Adomian
decomposition method (LADM) [21], Laplace variational iteration method (LVIM) [21],
and SCM [22]. Also, the generalized differential transform method [23] and the meshfree
spectral method [24] have been used to solve TFCBEs by Liu and Hou [23] and Hus-
sain et al. [24]. Furthermore, Bekir and Guner [31] solved equations (1)–(3) using the
(G′/G)-expansion method, while Abdel-Salam and Hassan [32] solved equation (1) using
the generalized exp-function method. Also, there are some references [33–38] about the
numerical solutions of fractional equations, the researcher should read them.

Secondly, the nonpolynomial splines [26–30, 39–44] are used to solve many fractional
order partial differential equations such as fractional subdiffusion problems [26, 27, 39,
40], fractional diffusion–wave problems [41, 42], fractional Schrödinger equation [28, 29],
and fractional differential equations [30, 43]. One of the advantages of these methods is
not only investigating an approximation for the function u(x, t) but also for its derivatives.
In this study, the parametric quintic spline method (PQSM) is used to investigate the nu-
merical solutions of TFBE and TFCBEs with a local truncation error O(h8) in distance
direction. Also, we demonstrate that the present method is stable and compare its results
with the existing methods such as CPS [3], QBSGM [4], and BSM [18]. These comparisons
conclude that the present method is more reliable and accurate.

This paper is organized as follows: In Sects. 2 and 3, the procedure of PQSM is presented
in detail, then we apply it to solve TFBE and TFCBEs. Section 4 contains the stability
analysis of the proposed method. Finally, the numerical results, the conclusion, and all
abbreviations are given in Sects. 5 and 6, respectively.

2 Parametric quintic spline method
Firstly, suppose that xi = x0 + ih are the nodes of a uniform partition of the interval [a, b]
with n subintervals, where h = xn–x0

n , x0 = a, xn = b, and i = 0, 1, 2, . . . , n. Also, consider that
tj = jk, where j = 0, 1, 2, . . . , t ∈ [0, T] and k = �t = tj+1 – tj, is the time step. Secondly, let
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Qi(x, tj) be the parametric quintic spline function defined as follows:

Qi(x, tj) = ai(tj) + bi(tj)(x – xi) + ci(tj)(x – xi)2 + di(tj)(x – xi)3

+ ei(tj) sinh
(
τ (x – xi)

)
+ fi(tj) cosh

(
τ (x – xi)

)

for i = 0, 1, 2, . . . , n – 1 and x ∈ [xi, xi+1], (5)

where ai(tj), bi(tj), ci(tj), di(tj), ei(tj), and fi(tj) are the spline coefficients and τ is a constant.
Suppose that uj

i = Qi(xi, tj), uj
i+1 = Qi(xi+1, tj), Rj

i = Q′′
i (xi, tj), Rj

i+1 = Q′′
i (xi+1, tj), Lj

i =
Q(4)

i (xi, tj), Lj
i+1 = Q(4)

i (xi+1, tj), and 	 = hτ . Hence the spline coefficients can be determined
as follows:

ai(tj) = –
Lj

i
τ 4 + uj

i,

bi(tj) =
1

6	τ 3

[
2
(
3 + 	2)Lj

i +
(
–6 + 	2)Lj

i+1 – 	2τ 2(2Rj
i + Rj

i+1
)

+ 6τ 4(uj
i+1 – uj

i
)]

,

ci(tj) =
1
2

(
–

Lj
i

τ 2 + Rj
i

)
,

di(tj) = –
1

6	τ

(
Lj

i+1 – Lj
i + τ 2(Rj

i – Rj
i+1

))
, (6)

ei(tj) =
1
τ 4

(
– coth(	)Lj

i + csch(	)Lj
i+1

)
,

and fi(tj) = 1
τ4 (Lj

i).
Using the continuity of 1st and 3rd derivatives of the spline function at (xi, tj), we have

Q′
i–1(xi, tj) = Q′

i(xi, tj) and Q(3)
i–1(xi, tj) = Q(3)

i (xi, tj), then for i = 1, 2, 3, . . . , n – 1, we get

Rj
i–1 + 4Rj

i + Rj
i+1 =

6
h2

(
uj

i–1 – 2uj
i + uj

i+1
)

– 6h2(γ1Lj
i–1 + 2δ1Lj

i + γ1Lj
i+1

)
, (7)

Rj
i–1 – 2Rj

i + Rj
i+1 = h2(γ Lj

i–1 + 2δLj
i + γ Lj

i+1
)
, (8)

where

γ =
1

	2

(
	 csch(	) – 1

)
, δ =

1
	2

(
1 – 	 coth(	)

)
,

γ1 =
–1
	2

(
1
6

+ γ

)
and δ1 =

–1
	2

(
1
3

+ δ

)
.

By multiplying equation (7) by γ and equation (8) by –6γ1, then subtracting them, we
get

Lj
i =

1
12h2(γ1δ – γ δ1)

[
(γ + 6γ1)Rj

i–1 + 4(γ – 3γ1)Rj
i + (γ + 6γ1)Rj

i+1

–
6γ

h2

(
uj

i–1 – 2uj
i + uj

i+1
)
]

, (9)

similarly, we can get Lj
i–1 and Lj

i+1.
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By substituting Lj
i, Lj

i–1, and Lj
i+1 into equation (8), we get

(γ + 6γ1)
(
Rj

i–2 + Rj
i+2

)
+ 2(2γ + δ – 6γ1 + 6δ1)

(
Rj

i–1 + Rj
i+1

)

+ 2(γ + 4δ + 6γ1 – 12δ1)Rj
i

=
6
h2

[
γ
(
uj

i–2 + uj
i+2

)
+ 2(δ – γ )

(
uj

i–1 + uj
i+1

)
+ 2(γ – 2δ)uj

i
]

for i = 2, 3, 4, . . . , n – 2. (10)

The system of equations (10) gives (n – 3) equations in (n – 3) unknowns. Furthermore,
to have a unique solution, we need two more equations which can be defined as follows:

3∑

l=0

alu
j
l + h2

4∑

l=0

blR
j
l + t1 = 0 for i = 1, (11)

3∑

l=0

alu
j
n–l + h2

4∑

i=0

blR
j
n–l + tn–1 = 0 for i = n – 1. (12)

By expanding equations (11) and (12) by Taylor’s approximation about x1 and xn–1, re-
spectively, we get

(a0, a1, a2, a3) = (0, 1, –2, 1),

(b0, b1, b2, b3, b4) =
(

1
240

, –
1

10
, –

97
120

, –
1

10
,

1
240

)
,

t1 =
31

60,480
(
h8)u(8)(x1, tj),

and tn–1 = 31
60,480 (h8)u(8)(xn–1, tj).

The local truncation error (LTE) of PQSM can be established by expanding equation
(10) by Taylor’s approximation about xi, then we have

LTEi =
1
6

h2(γ + δ + 12γ1 + 12δ1)u(4)(xi, tj)

+
1

180
h4(19γ + 4δ + 210γ1 + 30δ1)u(6)(xi, tj)

+
1

30,240
h6(571γ + 25δ + 5208γ1 + 168δ1)u(8)(xi, tj)

+
1

907,200
h8(1439γ + 14δ + 11,430γ1 + 90δ1)u(10)(xi, tj) + · · · . (13)

By assuming L1 = γ + δ + 12γ1 + 12δ1, L2 = 19γ + 4δ + 210γ1 + 30δ1, and L3 = 571γ + 25δ +
5208γ1 + 168δ1„ for L1 = L2 = L3 = 0, we get

γ =
31
95

δ, γ1 = –
109

2850
δ, δ1 = –

103
1425

δ, (14)

and LTEi = 79
1,795,500δh8u(10)(xi, tj) + O(h10), hence LTEi = O(h8).



Hammad et al. Fixed Point Theory Algorithms Sci Eng          (2023) 2023:9 Page 5 of 17

3 Applying PQSM on fractional Burgers’ equations
To investigate the solutions of TFBE and TFCBEs using the PQSM method, we consider
that the discretization of the fractional derivative equation (4) is defined as in [3] as follows:

Dα
t u(x, t)

=
k–α

(1 – α)�(1 – α)

j–1∑

m=0

[(
(j – m)1–α – (j – m – 1)1–α

)(
u(xi, tm+1) – u(xi, tm)

)]
. (15)

3.1 Time fractional Burger’s equation
From equation (1), we have

Rj
i = (uxx)j

i =
1
s
(
Dα

t Uj
i + Uj

i (Ux)j
i – f (xi, tj)

)
, (16)

by using CNA, we can rewrite equation (16) as follows:

Rj
i =

1
s

(
Dα

t Uj
i +

1
2

Uj
i
[
(Ux)j

i + (Ux)j–1
i

]
– f (xi, tj)

)
, (17)

by substituting (Dα
t u) from equation (15) into equation (17), we get

Rj
i =

1
s

[(
k–α

(1 – α)�(1 – α)

) j–1∑

m=0

[(
(j – m)1–α – (j – m – 1)1–α

)(
Um+1

i – Um
i

)]
]

+
(

1
2s

)
Uj

i
[
(Ux)j

i + (Ux)j–1
i

]
–

(
1
s

)
f (xi, tj), (18)

where i = 0, 1, 2, . . . , n and j = 1, 2, 3, . . . , and

(Ux)j
i =

⎧
⎪⎪⎨

⎪⎪⎩

1
h (Uj

i+1 – Uj
i ), i = 0,

1
2h (Uj

i+1 – Uj
i–1), 1 ≤ i ≤ n – 1,

1
h (Uj

i – Uj
i–1), i = n.

By substituting Rj
i from equation (18) into equations (10)–(12) and solving this nonlinear

system with the initial and boundary conditions using any numerical method, such as
Newton–Raphson method, we get the solution of time fractional Burger’s equation (1).

3.2 Time fractional coupled Burgers’ equations
By using CNA, we can rewrite equations (2) and (3) as follows:

Rj
1i = Dα

t Uj
i –

(
(UUx)j

i + (UUx)j–1
i

)

+
1
2
[(

(UVx)j
i + (UVx)j–1

i
)

+
(
(VUx)j

i + (VUx)j–1
i

)]
, (19)

Rj
2i = Dβ

t V j
i –

(
(VVx)j

i + (VVx)j–1
i

)

+
1
2
[(

(UVx)j
i + (UVx)j–1

i
)

+
(
(VUx)j

i + (VUx)j–1
i

)]
, (20)

where Rj
1i = (uxx)j

i and Rj
2i = (vxx)j

i.
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The nonlinear terms in equations (19) and (20) can be defined as in [45] as follows:

(ABx)j
i = Aj

iB
j
xi,

(ABx)j–1
i = Aj

iB
j–1
xi + Aj–1

i Bj
xi – Aj

iB
j
xi, (21)

where the symbols A and B in equation (21) can be used for U or V .
From equation (21) into equations (19) and (20) and by substituting Dα

t Uj
i and Dβ

t V j
i

from equation (15), we get

Rj
1i =

(
k–α

(1 – α)�(1 – α)

) j–1∑

m=0

[(
(j – m)1–α – (j – m – 1)1–α

)(
Um+1

i – Um
i

)]

–
[
Uj–1

i Uj
xi + Uj

i U
j–1
xi

]
+

1
2
[
Uj–1

i V j
xi + Uj

i V
j–1
xi + V j–1

i Uj
xi + V j

i Uj–1
xi

]
, (22)

Rj
2i =

(
k–β

(1 – β)�(1 – β)

) j–1∑

m=0

[(
(j – m)1–α – (j – m – 1)1–α

)(
V m+1

i – V m
i

)]

–
[
V j–1

i V j
xi + V j

i V j–1
xi

]
+

1
2
[
Uj–1

i V j
xi + Uj

i V
j–1
xi + V j–1

i Uj
xi + V j

i Uj–1
xi

]
, (23)

where i = 0, 1, 2, . . . , n and j = 1, 2, 3, . . . , and

Cj
xi =

⎧
⎪⎪⎨

⎪⎪⎩

1
h (Cj

i+1 – Cj
i), i = 0,

1
2h (Cj

i+1 – Cj
i–1), 1 ≤ i ≤ n – 1,

1
h (Cj

i – Cj
i–1), i = n,

(24)

where the symbol C in equation (24) can be used for U or V .
Replacing Rj

i in equations (10)–(12) by Rj
1i once and Rj

2i again, then substituting Rj
1i and

Rj
2i from equations (22) and (23)„ we can solve this nonlinear system with the initial and

boundary conditions using the Newton–Raphson method to obtain the solutions of time
fractional coupled Burgers’ equations (2) and (3).

4 Von Neumann stability analysis
In this section, we analyze the stability of PQSM using von Neumann method. For this
purpose, firstly, we need to linearize the nonlinear terms in equation (18) as in [3] as fol-
lows:

Rj
i =

j–1∑

m=0

[
k–α

s(1 – α)�(1 – α)
(
(j – m)1–α – (j – m – 1)1–α

)(
Um+1

i – Um
i

)
]

+
(

ϕ1

2sh

)
[
Uj

i+1 – Uj
i–1 + Uj–1

i+1 – Uj–1
i–1

]
for 1 ≤ i ≤ n – 1 and j ≥ 1, (25)

where ϕ1 = Uj
i is a local constant, and for simplicity we assume f (xi, tj) = 0.

Secondly, we consider that Uj
i is defined as follows:

Uj
i = ξ jel(kih), (26)

where l =
√

–1 and ξ is the growth factor.



Hammad et al. Fixed Point Theory Algorithms Sci Eng          (2023) 2023:9 Page 7 of 17

Substituting Uj
i from equation (26) into (25), we get

Rj
i = el(kih)

[ j–1∑

m=0

ϕ2
[

α

j,m
(
ξm+1 – ξm)]

+
(

ϕ1

2sh

)
(
ξ j + ξ j–1)(el(kh) – e–l(kh))

]

for 0 ≤ i ≤ n and j ≥ 1, (27)

where 
α
j,m = (j – m)1–α – (j – m – 1)1–α and ϕ2 = k–α

s(1–α)�(1–α) .
Substituting Uj

i and Rj
i from equations (26) and (27) into equation (10), we get

[ j–1∑

m=0

ϕ2
[

α

j,m
(
ξm+1 – ξm)]

+
(

ϕ1

2sh

)(
ξ j + ξ j–1)(el(kh) – e–l(kh))

]

× [
ρ1

(
el(–2kh) + el(2kh)) + ρ2

(
el(–kh) + el(kh)) + ρ3

]

=
6
h2 ξ j[γ

(
el(–2kh) + el(2kh)) + 2(δ – γ )

(
el(–kh) + el(kh)) + 2(γ – 2δ)

]

for j = 1, 2, 3, . . . , (28)

where ρ1 = γ + 6γ1, ρ2 = 2(2γ + δ – 6γ1 + 6δ1), and ρ3 = 2(γ + 4δ + 6γ1 – 12δ1).
Since el(–kh) + el(kh) = 2 cos(kh) and el(kh) – e–l(kh) = 2l sin(kh), then we have

[ j–1∑

m=0

ϕ2
[

α

j,m
(
ξm+1 – ξm)]

+ l
(

ϕ1

sh

)(
ξ j + ξ j–1) sin(kh)

]

× [
2ρ1 cos(2kh) + 2ρ2 cos(kh) + ρ3

]

=
6
h2 ξ j[2γ cos(2kh) + 4(δ – γ ) cos(kh) + 2(γ – 2δ)

]

for j = 1, 2, 3, . . . . (29)

Putting j = 1 in equation (29), we have

[(
ϕ2


α
1,0 + l

(
ϕ1

sh

)
sin(kh)

)
(
2ρ1 cos(2kh) + 2ρ2 cos(kh) + ρ3

)

–
6
h2

(
2γ cos(2kh) + 4(δ – γ ) cos(kh) + 2(γ – 2δ)

)
]
ξ 1

=
[(

ϕ2

α
1,0 – l

(
ϕ1

vh

)
sin(kh)

)(
2ρ1 cos(2kh) + 2ρ2 cos(kh) + ρ3

)]
ξ 0, (30)

hence

∣
∣∣
∣
ξ 1

ξ 0

∣
∣∣
∣ =

∣
∣∣
∣

(ϕ2 – lω1)ϕ3

(ϕ2 + lω1)ϕ3 – ϕ4

∣
∣∣
∣, (31)

where 
α
1,0 = (1)1–α = 1, ω1 = ( ϕ1

sh ) sin(θ ), ϕ3 = (2ρ1 cos(2θ ) + 2ρ2 cos(θ ) + ρ3), ϕ4 = 6
h2 (2γ ×

cos(2θ ) + 4(δ – γ ) cos(θ ) + 2(γ – 2δ)), and θ = kh.
Now, we can study the worth cases for equation (31), when cos(θ ) = ±1, as follows:
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(i) For θ = 2πn and n = 0,±1,±2, . . . , we get ω1 = 0, ϕ3 = 12(γ + δ), and ϕ4 = 0, hence
| ξ1

ξ0 | = 1.
(ii) For θ = πn and n = ±1,±3,±5, . . . , we get ω1 = 0, ϕ3 = 4(–γ + δ + 12γ1 – 12δ1), and

ϕ4 = – 48
h2 (δ – γ ), hence | ξ1

ξ0 | = ϕ2ϕ3
ϕ2ϕ3+ 48

h2 (δ–γ )
< 1 for δ – γ > 0,

therefore,

∣∣
∣∣
ξ 1

ξ 0

∣∣
∣∣ ≤ 1 and δ > γ . (32)

Similarly, putting j = 2 in equation (29), we get

[
ϕ2

(

α

2,0
(
ξ 1 – ξ 0)) + ϕ2

(

α

2,1
(
ξ 2 – ξ 1)) + lω1

(
ξ 2 + ξ 1)]ϕ3 = (ϕ4)ξ 2. (33)

Since 
α
2,0 = ((2)1–α – 1), 
α

2,1 = 1 and from equation (32) we can take ξ 1 = ξ 0 and δ > γ ,
then we have

[
ϕ2

(
ξ 2 – ξ 0) + lω1

(
ξ 2 + ξ 0)]ϕ3 = (ϕ4)ξ 2, (34)

hence
∣
∣∣
∣
ξ 2

ξ 0

∣
∣∣
∣ =

∣
∣∣
∣

(ϕ2 – lω1)ϕ3

(ϕ2 + lω1)ϕ3 – ϕ4

∣
∣∣
∣ ≤ 1. (35)

In general, for j = 1, 2, 3, . . . , we have | ξ j

ξ0 | ≤ 1 and δ > γ . Thus, the proposed method is
stable.

5 Numerical results
In this section, the numerical solutions of TFBE and TFCBEs are obtained by using the
PQSM method as introduced in Sects. 2 and 3. In addition, we discuss their solutions in
two cases according to the spline parameters given by equation (14) as follows:

Case 1: As in [26, 29, 42], if we take γ + δ = 1
2 , then we obtain

γ =
31

252
, δ =

95
252

, γ1 = –
109

7560
,

δ1 = –
103

3780
and LTE =

79
4,762,800

h8.

Case 2: Let δ = 0.001, hence we have

γ =
31

95,000
, γ1 = –

109
2,850,000

,

δ1 = –
103

1,425,000
and LTE =

79
1,795,500,000

h8.

To show the accuracy of the proposed method, we obtain the absolute errors or the error
norms L2 and L∞ in each example. The error norms are demonstrated as follows:

L∞ = Max
1≤i≤n–1

∣
∣(uExact)

j
i – Uj

i
∣
∣, (36)
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L2 =

√√
√√h

n–1∑

i=1

(
(uExact)

j
i – Uj

i
)2. (37)

Problem 5.1 Consider the time fractional Burger’s equation (1) [4] with

f (x, t) =
2

�(3 – α)
(
t2–αex) + t4e2x – s

(
t2ex), (38)

the initial condition is

u(x, 0) = 0 for 0 ≤ x ≤ 1, (39)

the boundary conditions are

u(0, t) = t2 and u(1, t) = et2, (40)

and its exact solution is

u(x, t) = t2ex. (41)

Table 1 contains the exact and approximated solutions of Problem 5.1 by using PQSM
with k = 0.002 and QBSGM [4] with k = 0.00025 at t = 1, s = 1, α = 0.5, and h = 0.05, 0.025,
and 0.0125. Also, Table 2 illustrates the numerical results for t = 1, s = 1, α = 0.5, n = 80 and

Table 1 The numerical solutions and error norms of Problem 5.1 for s = 1, α = 0.5, and t = 1

x PQSM (k = 0.002) QBSGM [4] (k = 0.00025) Exact

n = 20 n = 40 n = 80 n = 20 n = 40 n = 80

0.1 1.105145 1.105166 1.105171 1.105287 1.105216 1.105197 1.105170918
0.2 1.221357 1.221394 1.221403 1.221644 1.221493 1.221455 1.221402758
0.3 1.349794 1.349846 1.349860 1.350217 1.349992 1.349935 1.349858808
0.4 1.491745 1.491809 1.491825 1.492287 1.491996 1.491922 1.491824698
0.5 1.648629 1.648703 1.648722 1.649270 1.648922 1.648838 1.648721271
0.6 1.822021 1.822099 1.822119 1.822727 1.822342 1.822247 1.822118800
0.7 2.013657 2.013733 2.013753 2.014378 2.013979 2.013882 2.013752707
0.8 2.225462 2.225523 2.225541 2.226118 2.225747 2.225661 2.225540928
0.9 2.459564 2.459593 2.459603 2.460020 2.459745 2.459680 2.459603111

L2 3.11× 10–4 9.06× 10–5 3.90× 10–6 8.48× 10–4 1.62× 10–4 9.26× 10–5

L∞ 9.83× 10–5 2.04× 10–5 7.16× 10–7 6.25× 10–4 2.27× 10–4 1.33× 10–4

Table 2 The numerical solutions and error norms of Problem 5.1 for s = 1, α = 0.5, n = 80, and t = 1

x PQSM QBSGM [4]

k = 0.002 k = 0.002 k = 0.001 k = 0.00025

0.1 1.105171 1.105356 1.105276 1.105216
0.2 1.221403 1.221768 1.221611 1.221493
0.3 1.349860 1.350395 1.350164 1.349992
0.4 1.491825 1.492516 1.492218 1.491996
0.5 1.648722 1.649543 1.649188 1.648922
0.6 1.822119 1.823031 1.822636 1.822342
0.7 2.013753 2.014687 2.014282 2.013979
0.8 2.225541 2.226387 2.226020 2.225747
0.9 2.459603 2.460180 2.459931 2.459745

L2 3.90× 10–6 6.61× 10–4 3.75× 10–4 9.26× 10–5

L∞ 7.16× 10–7 9.37× 10–4 5.30× 10–4 1.33× 10–4
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Table 3 The numerical solutions and error norms of Problem 5.1 for s = 1, n = 40, and t = 1

x PQSM (k = 0.002) QBSGM [4] (k = 0.00025)

α = 0.25 α = 0.75 α = 0.25 α = 0.75

0.1 1.105164 1.105179 1.105217 1.105216
0.2 1.221390 1.221418 1.221495 1.221493
0.3 1.349841 1.349880 1.349995 1.349990
0.4 1.491802 1.491850 1.492000 1.491993
0.5 1.648696 1.648749 1.648928 1.648920
0.6 1.822091 1.822147 1.822348 1.822339
0.7 2.013725 2.013779 2.013984 2.013977
0.8 2.225517 2.225563 2.225750 2.225744
0.9 2.459589 2.459618 2.459747 2.459744

L2 1.26× 10–4 1.33× 10–4 1.65× 10–4 1.60× 10–4

L∞ 2.80× 10–5 2.85× 10–5 2.33× 10–4 2.25× 10–4

Figure 1 The exact solution and the numerical solution using PQSM of Problem 5.1 for h = 0.0125, k = 0.002,
α = 0.5, and t = 1

different values of k. These results show that the L∞ error norm at n = 80 for PQSM with
k = 0.002 is O(10–7), while it is O(10–4) for QBSGM [4] with k = 0.00025, hence PQSM
is better than QBSGM [4]. Moreover, the numerical results for α = 0.25, α = 0.75, s = 1,
h = 0.025, and t = 1 are shown in Table 3. Figure 1 shows the relation between the exact
solution and the PQSM solution. Also, the approximated solutions and the absolute errors
behavior for α = 0.5 and 0.75 are given in Figs. 2 and 3. These computations are obtained
according to Case 1.

Problem 5.2 Consider the time fractional Burger’s equation (1) [3] with f (x, t) = 0, the
initial condition is

u(x, 0) =
μ + γ + (γ – μ) Exp[ μ

s (x – ξ )]
1 + Exp[ μ

s (x – ξ )]
for –3 ≤ x ≤ 3, (42)

and the boundary conditions are given as follows:
(i) For α = 1,

u(–3, t) =
μ + γ + (γ – μ) Exp[ μ

s (–3 – γ t – ξ )]
1 + Exp[ μ

s (–3 – γ t – ξ )]
(43)
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Figure 2 The approximated solutions of Problem 5.1 using PQSM for h = 0.025, k = 0.002, (a) α = 0.5, and
(b) α = 0.75

Figure 3 The absolute errors distribution of Problem 5.1 for h = 0.025, k = 0.002, and t = 1

and

u(3, t) =
μ + γ + (γ – μ) Exp[ μ

s (3 – γ t – ξ )]
1 + Exp[ μ

s (3 – γ t – ξ )]
; (44)

(ii) For 0 < α < 1,

u(–3, t) ∼= 0.699993 +
(
1.07 × 10–5) tα

�(1 + α)
–

(
9.67 × 10–6) t2α

�(1 + 2α)

+
(
1.16 × 10–5) t3α

�(1 + 3α)
(45)

and

u(3, t) ∼= 0.100815 +
(
1.3 × 10–3) tα

�(1 + α)
+

(
1.17 × 10–3) t2α

�(1 + 2α)

–
(
5.72 × 10–6) t3α

�(1 + 3α)
. (46)

The exact solution is

u(x, t) =
μ + γ + (γ – μ) Exp[ μ

s (x – γ t – ξ )]
1 + Exp[ μ

s (x – γ t – ξ )]
for α = 1. (47)



Hammad et al. Fixed Point Theory Algorithms Sci Eng          (2023) 2023:9 Page 12 of 17

Table 4 The absolute errors of Problem 5.2 for α = 1, s = 0.1, μ = 0.3, γ = 0.4, and ξ = 0.8

t PQSM CPS [3]

1.0 4.346× 10–4 4.632× 10–3

2.0 6.528× 10–4 5.267× 10–3

2.5 7.264× 10–4 5.569× 10–3

3.0 7.840× 10–4 5.857× 10–3

Table 5 The numerical solutions and the absolute errors of Problem 5.2 for t = 3, α = 1, s = 0.1,
μ = 0.3, γ = 0.4, and ξ = 0.8

x Exact solution PQSM CPS [3] Absolute errors of

PQSM CPS [3]

–1.80 0.6999932828 0.69999336 0.69999302 7.614× 10–8 2.608× 10–7

–1.50 0.6999834786 0.69998367 0.69998276 1.938× 10–7 7.193× 10–7

–0.96 0.6999165251 0.69991749 0.69991259 9.657× 10–7 3.931× 10–6

–0.48 0.6989641713 0.69897337 0.69963109 9.198× 10–6 6.669× 10–4

0.00 0.6985164261 0.69852846 0.69844644 1.203× 10–5 6.998× 10–5

0.48 0.6937877575 0.69381151 0.69349918 2.375× 10–5 2.886× 10–4

0.96 0.6746261369 0.67458239 0.67349066 4.375× 10–5 1.135× 10–3

1.50 0.5905446857 0.58997244 0.58651442 5.722× 10–4 4.030× 10–3

1.80 0.4873937837 0.48661686 0.48167270 7.769× 10–4 5.721× 10–3

Table 6 The numerical solutions of Problem 5.2 for t = 2, s = 0.1, μ = 0.3, γ = 0.4, and ξ = 0.8

x α = 0.2 α = 0.8

PQSM CPS [3] PQSM CPS [3]

–1.80 0.69990818 0.69990801 0.69995843 0.69995837
–1.50 0.69976764 0.69976704 0.69989353 0.69989305
–0.96 0.69881774 0.69881444 0.69945724 0.69945423
–0.48 0.68593695 0.69505832 0.69348579 0.69771999
0.00 0.68023291 0.68019612 0.69080108 0.69075808
0.48 0.62975137 0.62969696 0.66570607 0.66557967
0.96 0.50954256 0.50952078 0.59278878 0.59246071
1.50 0.32247745 0.32242313 0.42059669 0.41986080
1.80 0.23615545 0.23607121 0.30646604 0.30566973

The approximated solutions of Problem 5.2 using PQSM and CPS [3] are given in Ta-
bles 4–6 with the following conditions: h = k = 0.01, s = 0.1, μ = 0.3, γ = 0.4, ξ = 0.8, and
α = 0.2, 0.8, and 1. These results indicate that PQSM is the most accurate. Table 4 shows
that the maximum absolute error of PQSM is O(h–4), while it is O(h–3) for CPS [3]. The
exact solution and the numerical solution using PQSM for different values of α are given
in Figs. 4, 5 and 6. These results are determined according to Case 2.

Problem 5.3 Consider the time fractional coupled Burgers’ equations (2) and (3) [18] with
the initial conditions:

u(x, 0) = v(x, 0) = sin(x) for 0 ≤ x ≤ 1, (48)

the boundary conditions are

u(0, t) = v(0, t) = 0 and u(1, t) = v(1, t) = sin(1)e–t , (49)

and their exact solutions are

u(x, t) = v(x, t) = sin(x)e–t . (50)
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Figure 4 The exact solution and the numerical solution using PQSM of Problem 5.2 for h = k = 0.01, α = 1,
and t = 3

Figure 5 The approximated solutions of Problem 5.2 using PQSM for α = 1, h = k = 0.01, and t = 1, 2, and 3

Figure 6 The approximated solutions of Problem 5.2 using PQSM for h = k = 0.01, (a) α = 0.2 and (b) α = 0.8

Table 7 illustrates the exact solution and the numerical solution of Problem 5.3 given
by PQSM for α = β = 1 and at time t = 1. Comparisons between PQSM and BSM [18]
are given in Table 8 for α = β = 0.6, 0.9, and 1, and they conclude that PQSM gave better
results than BSM [18]. Also, the approximated solutions for α = β = 0.2, 0.6, and 0.9 are
shown in Table 9. The solution of Problem 5.3 and the absolute errors are shown in Figs. 7
and 8. These computations are investigated according to Cases 1 and 2.
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Table 7 The numerical solution and the absolute errors of Problem 5.3 for t = 1, h = 0.1, k = 0.01, and
α = β = 1

x Exact PQSM Absolute errors

0.1 0.036726662 0.0367541 2.749× 10–5

0.2 0.073086362 0.0731449 5.859× 10–5

0.3 0.108715808 0.1088009 8.510× 10–5

0.4 0.143259002 0.1433644 1.054× 10–4

0.5 0.176370799 0.1764883 1.175× 10–4

0.6 0.207720358 0.2078400 1.197× 10–4

0.7 0.236994443 0.2371047 1.103× 10–4

0.8 0.263900558 0.2639884 8.788× 10–5

0.9 0.288169866 0.2882213 5.141× 10–5

Table 8 The L2 error norm of Problem 5.3 for k = 0.01

t α = β = 1 α = β = 0.9 α = β = 0.6

PQSM BSM [18] PQSM BSM [18] PQSM BSM [18]

0.01 6.48× 10–5 4.16× 10–2 6.17× 10–3 2.68× 10–2 4.02× 10–2 2.49× 10–2

0.05 2.43× 10–4 3.99× 10–2 1.57× 10–2 3.01× 10–2 6.31× 10–2 2.58× 10–2

0.10 3.72× 10–4 3.79× 10–2 1.74× 10–2 2.88× 10–2 5.82× 10–2 2.31× 10–2

0.50 4.31× 10–4 2.55× 10–2 2.80× 10–4 1.64× 10–2 5.23× 10–3 5.46× 10–3

1.00 2.71× 10–4 1.54× 10–2 8.13× 10–3 7.87× 10–3 2.41× 10–2 4.84× 10–3

Table 9 The numerical solution of Problem 5.3 for t = 1, h = 0.1, and k = 0.01

x α = β = 0.2 α = β = 0.6 α = β = 0.9

0.1 0.0421081 0.0394294 0.0376431
0.2 0.0833382 0.0783387 0.0748691
0.3 0.1230931 0.1161984 0.1112536
0.4 0.1607006 0.1524908 0.1463852
0.5 0.1955216 0.1867052 0.1798625
0.6 0.2269384 0.2183411 0.2112986
0.7 0.2543721 0.2469104 0.2403234
0.8 0.2772507 0.2719389 0.2665878
0.9 0.2949838 0.2929689 0.2897663

Figure 7 The exact solution and the numerical solution using PQSM of Problem 5.3 for h = k = 0.01,
α = β = 1, and t = 1
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Figure 8 The absolute errors distribution of Problem 5.3 using PQSM for h = 0.1, k = 0.01, t = 1, and
α = 0.2, 0.6, 0.9, and 1

6 Conclusion
In this work, the solutions of TFBE and TFCBEs have been investigated using PQSM
whose local truncation error is O(h8). We showed that the proposed method is stable.
In addition, the given results are obtained for different values of the fractional order α and
compared with the previous methods, which verified that the present method has good
accuracy and efficiency.
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